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Abstract

The mechanics of lowing granular materials such as coal, sand, sgriculiural produets, fertilizers, dry chemicals, metal
ores, ele, and their Bow characteristics have received considerable attention in recent years: In this paper, the governing
equations for the flow of granilar materials are derived using a continuum approach, For a fully developed flow of these
materials down an inclined plane, the equations reduce 1o a system of coupled non-linear ordinary differential equations
for the cuse where the material properties are assumed to vary quadratically with the volume fraction. The boundary
value problem is solved numerically and the results are presented for the volume fraclion and velocity profiles, Published

by Elsevier Science Lid. All rights reserved.
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1. Introduction

A recent study indicates that the commercial and
large-scale solids-processing plants have an aver-
age operating reliability of 63%, compared to 84%
for large-scile plants using only liquids and gases
{el. Ref, [17). Such a poor understanding of the flow
of granular materials has serious economic consc-
guences. Because we cannot yet reliably scale up
laboratory or pilot-plant designs lo commercial
sizes, cngineers are forced to resort to costly, cut-
and-try methods of design. Also a major challenge
facing the designers of coal gasification plants is
to assure reliable and efficient movement of solids
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soudi).

into and out of high-pressure, high-temperature
fluidized-bed processing units. Earlicer studies of the
flow of granular material were mainly concerned
with the engineering and structural design of bins
and silos. The inaccuracy of these theories, espe-
cially for dynamic conditions of loading or empty-
ing, occasionally resulted in failure of the bin or silo
{cf. Rel. [2]) Also many situations such as dis-
charge through bin outlets, low through hoppers
and chutes (cf. Ref. [3]), flow in mixers, and slurry
Lransports require information on the low patterns
{cf. Refs. [4.5.59]). Therefore, to design equipment
such as bins and siles, combustors, hoppers, chutes,
hydrocyclones, cic., in an effective and economical
way, a thorough understanding of the various fac-
tors governing the flow characteristics of granular
materials must be obtained. These design needs
have already motivated extensive analytical and
experimentil investigations of the low of granular
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Nomenclature

b body lorce vector

D symmetric part of the velocity gradient
F deformation pradient

i acceleration due to gravity

I charaecteristic length

1 identity tensor

L gradient of the velocity vector

dimensionless average volume [raclion
i time

¥ direction normal to the inclined plane

T Cauvchy stress tensor

tip reference velocity

o dimensionless velocity of the granular material
X spatial position occupied at time !

X reference position

(Yyory dimensionless y

o angle of inclination of the inclined plane with the horizontal
i sranular material constitutive coefficients, i = 0-4
¥ deformation function

¥ distributed mass density

v volume fraction

p bulk density

fo reference density

div divergence operator

v gradient symbol

] outer product

malerials, Despite wide interest and more than five
decades of experimental and theoretical investiga-
tions many aspects of the behavior of flowing
granular materials are still not well undersiood. At
this stage, however, there 15 no clear under-
standing of the constitutive relations that govern
the flow of granular materials. The general field is
still in a stage of development comparable to that of
Auid mechanics before the advent of the Navier-
Stokes relations,

Granular materials exhibit both the properties of
a solid and a fluid as they can take the shape of the
vessel containing them, thereby exhibiting fluidlike
characteristics, or they can be heaped, thereby

behaving like a solid. Also, granular materials can
sustain shear stresses in the absence of any defor-
mation, and the critical stress at which shearing
begins depends on the normal stress. The charac-
teristics of the particles that constitute the bulk
solids are probably of major importance in in-
fluencing the characteristics of the bulk solids both
at rest and during flow, It is very difficult to charac-
terize bulk solids, which are composed ol a variety
of materials mainly because small vamations in
some of the primary properties of the bulk solids,
such as the size, shape, hardness, particle density,
and surface roughness can result in very different
behavior. Furthermore, secondary factors such as




the presence or absence of moisture, the severity of
prior compaction, the ambient temperature, etc,
which are not directly associated with the particles,
can have a significant effect on the behavior of the
bulk solids. A granular material covers the com-
bined range of granular powders and granular
solids with components ranging in size lrom aboult
10 pm up to 3mm. A powder is composed ol
particles up to 100 pm (diameter) with further
subdivision into ultrafine (0.1-1.0pm), superfine
(I=10um), or granular (10-100 pm) particles.
A granular solid consists of materials ranging from
about 100 to 3000 pm (cf. Ref. [4]).

Also, little is known of the relationship between
particle shape and flow properties in detail al-
though it is observed that smooth spherical par-
ticles display more favorable low conditions than
particles with a sharp angular surface, especially il
they have a tendency to interlock, In addition,
moisture content of the bulk solids is one of the
mast important factor controlling the flow proper-
lies of the granular materials. In fact, moisture
content in bulk solids is mostly undesirable, be-
cause the surface moisture leads to the appearance
of cohesive forces between particles and of adhesive
forces between particles and the walls of the con-
tainer. Both retard the Qow of solid particles and
under certain conditions may even stop the fow
entirely. Since for the same weight the total surface
ol solids is greater for smaller grains, the surface
moisture content increases inversely as the particle
diameter. Therefore, fine particles display more
cohesive and adhesive forces than the larger grains.
Furthermore. fine particles when stored for a
certain time undisturbed, have a tendency to com-
pact, that is to reduce the total volume which
creates  additional resistance to the flow. In
peneral, the flow properties of most materials can
be expected to change drastically as moisture
contenl changes, particularly for finer materials (cf.
Ref. [6])

Due to their complexity, the modeling of granu-
lar materials would require a [usion of the ideas
from salid, Muid, and soil mechanies. Granular ma-
terials, like non-Newtonian fluids (cf. Ref. [7]) and
non-linearly elastic solids, exhibit normal-stress dif-
ferences in simple shear fow. Thus, modeling
granular materials and slurries is very complex and
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has to draw upon experiences [rom non-linear fluid
and solid theories. Scientific understanding of the
flow of granular materials has been hampered both
by the difficulty of making measuremenits and by
a tendency to look for immediate engineering solu-
tions to individual problems as they arise, The flow
of granular materials strongly depends upon the
distribution of void space. Experiments hive to be
devised to quantily and describe the non-linear
behavior of such materials, and theories have to be
developed to explain the experimentally observed
facts and predict other qualitative phenomena con-
firmable by further experiments.

In the past several years many rescarchers have
tried to address some of these issues. Rajagopal and
Massoudi [8] have outlined an experimental/the-
oretical procedure to measure the material proper-
ties in an orthogonal rheometer. The model
proposed by them, which is based on the works of
Cowin and Savage, has been used to study various
problems such as low in a vertical pipe {cl. Rel
[97), heat transfer and flow on an inclined plane
[10], flow due to natural convection (cf. Rel, [117).
Al the same time this model has been used within
the context of mixture theory to study problems of
practical interest in multiphase applications (cf. Ref.
[12]). Flow down an inclined plane has been
studied extensively by many rescarchers. Recent
review articles by Campbell [13]), Hutter and Ra-
jagopal [14], and de Gennes [15] address many of
the mmteresting issues in the filed of granolar mate-
rials. In this paper, we extend the result of Gudhe
et al. [10] to the case where the material properties
are functions of volume fraction.

2, Governing equations

The balance laws, in the absence of chemical
reactions and thermal effects, are the conservation
of mass, conservation of linear momentum, and
conservation of angular momentum. Conservalion
of mass in the Lagrangian form i3

pn = pdetF, (1)

where, pg is the reference density of the material,
£ is the current density, and F is the deformation
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gradient which is given by

ox
F=—. 2
ixX @
The conservation of mass in the Eulerian form is
given by

92 1 divipu) =0, (3)
ol

where /¢ is the partial derivative with respect Lo
time. The balance of linear momentum is

D
pﬁl: = divT + ob, (4)

where D/D is the material time derivative, b is the
body force, and T is the Cauchy stress tensor. The
balance of angular momentum (in the absence of
couple stresses) vields the resultl that the Cauchy
slress is symmetric.

3. Constitutive cquation

Early experimental investigations ol granular
materials were conducted by Hagen [16] who
studied the low of sand in tubes. Reynolds [17]
observed that lor a shearing motion to occur in
a bed of closely packed particles, the bed must
expand to increase the volume of its voids. He
termed this phenomena “dilatancy”, [cf. Rel. [18]].
Reynolds [19] used the idea of “dilatancy”™ to de-
scribe the capillary action in wet sand. Many of the
existing theories for flowing granular materials use
this observation to relate the applied stress Lo the
voidage and the velocity. Later, Reiner [20] pro-
posed a continuum model to describe the mechan-
ics of wet sand. This model does not take into
account how the voidage (volume fraction) affects
the stress. However, using his model, Reiner [20]
showed that application of a non-zero shear stress
produces a change in volume. McTigue [21] dis-
cusses the extension of the Reiner-Rivlin model to
granular maternals.

Bagnold [22] performed experiments on neu-
trally buowant, spherical particles suspended in
Mewtonian fluids undergoing shear in coaxial
rotating cylinders. He was able to measure the

torgue and normal stress in the radial direction for
various concentrations of the grains. He distin-
guished three different regimes of flow behavior,
which he termed macro-viscous, transitional, and
grain-inertia. In the so-called “macro-viscous™ re-
gion, which corresponds to low shéar rates, the
shear and normal stresses are linear funcitions of the
velocity gradient. In this region, the fluid viscosity
is the dominant parameter, In the region, called the
“grain-inertia region”, the fluid in the interstices
does not play an important role and the dominant
effects arise from particle—parlicle interactions.
Here, the shear and the normal stresses are propor-
tional to the square of the velocity gradient. Con-
necting the two limiting flow regimes was the
Bagnold's transitional flow, in which the depend-
ence of the stress on shear rate varied from a linear
one corresponding to the macro-viscous regime to
i square dependence predicted for the grain-inertia
flow regime. The interesting phenomenon was the
presence of a normal stress proportional to the
shear stress, similar to that of the guasi-static
behavior of a cohesionless material obeying the
Mohr-Coulomb criterion. From his experiments,
Bagnold was able to define the various flow regimes
in terms of dimensionless number N, later referred
to as the Bagnold number, given by

(3)

Here pr and p; are the mass density and viscosity
of the fluid, & is the diameter of the particle, 4, is
the linear concentration of particles, and u, ; 15 the
velocity gradient, The macro-viscous regime cor-
responds to N << 40, and the grain-inertia regime lo
N = 450, He called the intermediate range of N the
“transitional” region. Bagnold [22] applied his cy-
lindrical shear cell results and his analysis for the
siresses to study the problems of gravity flow of
particulate matter down inclines as might occur in
rock [alls and debris Qows (cf. Rel [23]).

Another criterion ofien vsed when devising a the-
ary for the flow of granular materials is that the
equilibrium states specified by the theory are re-
quired to coincide with the limiting equilibrium
states specified by the Mohr-Coulomb criterion.
The Coulomb failure criterion (cf, Refs. [24,25]),




based on experiments, states that vielding will og-
cur when

g= bUT + l'ﬁj

Here 8§ and T are the shear stress and normal
stress, respectively, acting on a plane at a point; ¢ is
the coeflicient of cohesion, and by is the coefficient
of static friction related to the internal angle of
friction ¢ through

by = tan ¢. {7}

When cohesion is absent (¢ = 0}, it is usual to call
a granular medium an ideal one, One in which
internal friction is absent (¢ = 0)is called an ideally
cohesive medium. For dry, coarse materials, the
cohesion coefficient can be neglected. Typical
values for the internal angle of [Metion, @, obtained
during quasi static vielding at low stress levels are
close to the angles of repose, e.g., about 247 for
spherical glass beads and 38° for angular sand
grains (cf. Ref, [4]).

The pioneering work of Reynolds and Bagnold
was followed by several others who atlempted
to model the mechanics of granular materials.
These approaches can be classified under two gen-
eral categories; statistical and continuum thearies,
The statistical theories which include various
versions of the kinetic theory of gases, turbulence
models, particle simulation (ef. Ref. [61]), etc. are
not discussed here, In the continuum approach it is
assumed that the material properties of the en-
semble may be represented by continuous functions
so that the medium may be divided infinitely
without losing any of its defining properties. Con-
tinuum plasticity-type models based on the Mohr-
Coulomb criterion for failure have been proposed
by Drucker and Prager [26], Spencer [27,607, and
Jenike [28].

One of the carly continuum models for flowing
granular materials based on the principles of
modem continuum mechanics was proposed by
Goodman and Cowin [29,307. They used the ideas
that had already been developed for materials with
microstructure {or oriented materials) such as
liquid crystals and micropolar materals. Cowin
[31,32] and Savage [33] proposed a non-lingar
theory for incompressible granular materials,
which represents the fiow of granular materials at
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relatively low stress levels and high shear rates such
that the bulk behavior of the material is primarily
due 1o interparticle friction: Cowin [32] showed
that by including the gradient of the velume frac-
tion as one of the important parameters in proposi-
ng a constitutive equation for the stress tensor,
a theory can be devised for the flow of granular
materials. In this theory a critical yield condition
called the Mohr-Coulomb emerges naturally, as
does the transition between the frictional flow re-
gimes, characterized by the absence ol deformation
and the viscous flow regime, characierized by de-
formation.

The Cauchy stress tensor T in a Jowing granular
material may depend on the manner in which the
granular material 1s distributed, ie, the volume
lraction v and possibly also its gradient, and the
symmetric part of the velocity gradient tensor I,
Thus, we assume that

T =f{y, ¥v, D) (8]

Using standard arguments in mechanics, restric-
tions can be found on the form of the above consti-
tutive expression based on the assumption of
frame-indifference, isotropy, ete. (el Rel. [34])
There could be further restrictions on the form of
the constitutive cxpression because of internal con-
straints, such as, incompressibility and thermo-
dynamics restrictions due to Clausius=Duhem
inequality (cf. Ref. [35]). A constitutive model that
predicts the possibility of one normal stress-differ-
ence and its properly frame invariant is given by (el
Ref. [8]k

T = {falv) + §, (vIVe.Vv + fa2(vitr D1
+ B (vIVv@Vy + fa(viD), (9

where the following interpretation can be given to
the material parameters: fig(v) is similar to pressure
in a compressible flwd and is given by an equation
of state, fi;(v) is like the second coefficient of viscos-
ity in a compressible fluid, #,(v) and f,(v) are the
material parameters connected with the distribu-
tion of the granular materals, and f3(v) is the
viscosity of the granular materials. The above
model allows for normal stress differences, a feature
observed in granular materials (cf. Rel. [36]). In
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general, the material properties iy through f, are
[unctions of the density (or volume fraction v), tem-
perature, and the principal invariants of the tensor
D, ziven by

D = 3[(Vu) + (Vu)"], (10)

whereu is the velocity of the particles. In Eqg. (9), T is
the identity tensor, V the gradient operator, & indi-
cates the outer {dyadic) product of two vectors, and
tr designates the trace of a tensor. Furthermore, v is
related to the bulk density of the material p,
through

o=, {11y

where v is the actual density ol the grains at the
place x and time t and the field v is called the
volume [raction {(gor the volume distribution) and is
related to the porosity it or the void ratio & by

with0v <l {12)

p=1—fi=

c

It was mentioned earlier that fi5(v) plays the role
of pressure in a compressible gas, with v now play-
ing the role of the density, The works of Walton
and Braun [37.38] assume that the wviscosity is
a [unction of both the selid fraction v and the tensor
D, and varies as a quadratic function of v, D being
held fixed. Following, Rajagopal and Massoudi [8]
we assume that the material parameters have the
structure

Balv)= kv,

Bi(v) = fro+ Brov+ frizvd

Balv) = fag + flay v+ fagv?, (13)
fa(v) = fag + Barv + faz W

Bali) = Pao + Barv + Bazv’.

The above representation can be viewed as
a Taylor series approximation for the material
parameters, Such a quadratic dependence, at leas!

for the wviscosity fiz, is on the basis of dynamic
simulations of particle interactions (cf Refs,

[37.38]). Further restrictions on the coefficients can
be obtained by using the {ollowing argument. Since
the stress should vanish as v — 0, we can conclude
that

Bio = B0 =10 (14)

This is really a principle of the limiting case, That is,
if there are no particles, then v and grad v are zero,
And when there are no particles, the siress should
also be zero; however, the kinematical terms D and
ir D, multiplied by ff; and f}; in Eq. (¥) do not
neeessarily go to zere when there are no particles.
Therefore, to ensure this we impose the restriction
given by Eq. (14). The rationale for the structure
given above can also be found in Refl. [8]. Also,
Johnson et al. [39.40] have used this model to
study two-phase Hows, Furthermore, Rajagopal
and Massoudi [8] and Rajagopal et al. [41] have
shown that

k<10 (15}

as compression should lead to densification of the
material.

Eq. (?) represents a general constitutive relation
for Mowing granular materials. The material
parameters iy — fy have to be specified before
solving 4 boundary value problem. Rajagopal and
Massoudi [8] and Rajagopal et al. [42] outlined an
experimental procedure where they showed that
using an orthogonal rheomeler, these material
parameters, in principle, can be measured. An alter-
native way of deriving exact forms for these
(rheological) properties is to use another theory
such as the kinetic theory of gases, or a statistical
theory, where the explicit dependence of these ma-
terial parameters on other primary variables such
a5 particle diameter, particle volume fraction, fluc-
tuation of particles, particle distribution, ete, can
be obtained. Boyle and Massoudi [43] have pro-
vided this information for this particular model.
Furthermore, many granular materials exhibit
a yield stress before they begin to flow. A typical
vield criterion used very frequently in granular ma-
terials literature is the Mohr—Coulomb criterion.
Cowin [32] and Savage [2] have shown that a sim-
ilar constitutive relation to Eq. (9) is capable of




complying with the Mohr-Coulomb criterion if
a specific representation is given to f§y, relating it to
the internal angle of friction.

4. Nuomerical solution

The flow of granular materials down an inclined
plane has been studied by several authors (cf. Refs.
[2,29 44-46,587). Hutter et al, [44,45] show that the
existence or non-exisience of solutions te their
equations depend on the type of boundary condi-
tions that they imposc. Recently, Rajagopal et al.
[42] also studied the existence and unigqueness of
solutions to the equations governing the flow of
granular materials down an inclined plane. (The
constitutive relation used by them is the same as
Eg. (%) which is different from the one used by
Hutter et al. [4445]). They delineate a range of
values for the material paramelers, which are as-
sumed to be constant and ensure existence of solu-
tions to the equations under consideration. They
also prove that for certain range of values of the
material parameters no solution exists, while for
a different range there is multiplicity of solutions.

In this problem, we consider steady one-dimen-
sional fully developed flow of incompressible
granular materials (i.e., ¥ = constant) down an in-
clined plane, where the angle of inclination is
Furthermore, the volume fraction and the velocity
fields are assumed to be of the form

V=),
u= Uy (16}

115 assumed that fi, is given by Egs. (13)and (15}
with #,, ffa, #1, and iz to be quadratic in volume
fraction as given by

By =fi(l +v+ Y, (17)
fr=Fall +v+47), (18)
Bs = Balv + %), (19)
Ba = Pall +v+3), (20)

where, ﬁiuﬁh are constants, With the above as-
sumptions and the flow field given by Eq. (16), the
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conservation of mass is identically satisfied and the
balance of linear momentum reduces to

v de d*v
e I i 1 +v+9t— ——
S Wb+ B v

dv]?®
+ (i + 0 + 2v) 3| = eveoss (21

,d*U dv dlY
falv +1 ]d—y;‘i'ﬁs{] + 2 P T
= — Jygvsind. (22)

In general, whether we use the kinetic theory
approach (cf. Refs. [47.534,57]) or the continuum
approach to solve boundary value problems, the
need for additional boundary conditions arises,
In the continuum theories of Goodman and Cowin
[29,307 and its modifications (cf. Refs, [39,40,48,49,
55,56]), two boundary conditions on the volume
fraction are required. In the numerical solution of
shearing motion of a fuid-solid flow, Passman
et al. [49] prescribed the values of the velume
fraction at the two plates. An allernative way is Lo
use experimenial results, if they are available
(cl. Refl. [33]). Later Johnson et al. [39,40] con-
sidered this issue and suggested using an integral
condition for the valoe of volume fraction. Looking
at Egs. (21) and (22) it is clear that we need two
boundary conditions for the volume fraction, and
two boundary conditions for the velecity.

Egs. (21} and (22) are to be solved subject to the
following boundary conditions:

U=0 aty=0 (on theinclined plane) (23)
and,

dv

—_ = 24
o =0 (24a)

kv 4+ (B + Bl + v+ 1'2]{-3;} e~ 0 aty=h
{at the free surface) {24b)

and the constraint that

h
Oy = I vdy, Op being given. (25}

a



as the ratio of the pressure force to the gravity force,
A, is the ratio of forces developed in the material
due to the distribution of the voids to the force
of gravity, and A; is the ratio of the viscous
lorce to the gravity force (related to the Reynolds
number),

The system of equations (27) and (28) with the
boundary conditions (291-(31) and, subject to the
restriction (16), are solved numerically using & col-
location code COLSYS {cf. Ref. [50]). Lt follows
from Rajagopal and Massoudi [8] that R; must
always be less than zero for the solution to exist and
all the other non-dimensional parameters, iLe.,
Az and Az must be greater than zero, A parametric
study of the equations is carried out to see how the
various non-dimensional parameters affect the vol-
ume fraction and the velocity profiles.

The manner in which the volume fraction and
the velocity profiles change with Ry, is shown in
Figs. | and 2, respectively. Notice, that the volume
[raction profile decreases rom the surface of the
plane to the free surface, which is to be expected.

i3

Increasing the magnitude of R, with the other
constants being held fixed, results in-a decrease of
velocity. Increasing values of 4, results in a de-
crease of volume fraction and increase in velocity
{cl. Figs. 3 and 4). Fig. 5 shows the effect of 4; on
the velocity profile. Notice that as A, increases the
velocity decreases, which is expected because A, is
the inverse of the Reynolds number.

Finally, we can oblain an exact solution to the
system of equations (21} and (22). If we assume that
flo is zero and §,-f, are constants, then the mo-
mentum equation in the y-dircction, e, Eg. (21)
can be integrated directly to give an expression for
the volume fraction:

.F FI ! 1/3 3 317 Il 113
V=—p" ( 1‘:') ¥+ ( IIG) ¥+, {33}

18- 12 2
where
g Ccosy )
F = ——— 34
3B + Fa) G4

A,=30, A;=003

N=0.4, a=30

1.0

09 7

0E 1

LEGEND

By
Ry
R, = =10

3 4 3 i

Velooity (Dimensionless)

Fig. 2. Efficct of #; on the velocity profile.
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Also, notice that Eqgs. (24a) and (24h) are the stress-
free conditions, Eq. (23) indicates the no-slip condi-
tion (rough wall) assumption. Now, the system of
Egs. (21) and (22} subject to the boundary condi-
tions (23), (23) are non-dimensionalized using the
following equations:

=Y G== (26)

y_.l'!’ r_uﬂ'

The above system of equations reduces to

dv L dv dhv
Ri— +4s(l s
1EE_T-'+ al +|rl+l|]d}‘l.‘.|1'|_rz
A d' 3
—»2—1[1 4 21'}{{—1-%} = Vcosa, (27}
4?0 dv dO
Al + 1‘}?__{; +ody (14 2v) d—; d—; = — vsing
[25)

and the boundary conditions become

U=10, aty=0 (on the inclined plane), (29)
I
N = [ vd7 (30)
Jo
ang,
di
— =1, 31
T (31a)
A s fdr}®
Rt1'+f{1+v+1"]{d—;} =0 (31h)
at ¥=1 [at the [ree surface)
The non-dimensional parameters Ry, 4. and
A5 are given by
_ ko 2B+ _BUs o5
T A T

These dimensionless parameters have the [ollow-
ing physical interpretatons: R, could be thought of

A= a0, Ag= AN
N=04, =30

1
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Fig. 1. Eficct of R, on the volume fraclion.
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and v, 15 a specified value for the volume fraction at
the plate, Once we substitute this expression into
the x-component of the momentum equation and
integrate, we oblain an explicit relation for the
velocity of particles:

o _ Zngsinaf F o 1 {Fy ”af
5, 1360° 12\ 12

LR L v
)
Zygsina(F , 1P\
T—ﬁ3 {ﬁh +§( E ) I

#

2% 1/3
+1(3F‘°) h:+|.'.:,.ir}}'_. (35)

2y, 2
where h is the distance from the plate to the free
surface, assumed to be known. In obtaining
Eqgs. (33) and (33}, a no-slip boundary condition is

used at the wall (y =0), and a traction free condi-
tion is imposed at y = h.

5, Coneclusions

The main reason for doing a parametric study,
via non-dimensionalizing the equations of motion,
is that we can gain some insight into a class of
problems. Since the material parameters flg—-Ji,
have not been measured experimentally, it is not
possible to compare our resulls to-any experiment,
quantitatively . However, gualitatively we can see
that since the material parameters are functions of
the volume fraclion, there is a stronger non-lin-
earity in the equations, and therefore, numerically
it is more difficult to obtain solutions. The case
where f; and fi. are constants, was studied by
Gudhe et al, [10]. One of the effects that we observe
in the present investigation is that the volume frac-
tion profiles as depicted in Fig. 1 are influenced



in

significantly by the variations in B, due to the
presence of the higher-order terms in Eqg. (27) and
as a result, the velocity profiles are affected accord-
ingly, due to the coupling of the Eqs. (27) and (28).
Furthermore, because of the kinematical con-
straints imposed by Eq. (16). certain non-linear
phenomenon, similar to the “hydrauvlic jump”,
which is observed in some experimental chute ows
of granular materials (¢f. Refs, [31,52]) cannot be
obtained using the present formulation,
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